окрестность

  • 141ЛОКАЛЬНАЯ ТОПОЛОГИЧЕСКАЯ ГРУППА — топологическая группа, в к рой групповые операции определены лишь для элементов, достаточно близких к единице. Введение Л. т. г. было инспирировано изучением локальной структуры топологич. групп (т. е. их структуры в сколь угодно малой… …

    Математическая энциклопедия

  • 142ЛОКАЛЬНО ВЫПУКЛОЕ ПРОСТРАНСТВО — отделимое топологическое векторное пространство над полем действительных или комплексных чисел, в к ром любая окрестность нулевого элемента содержит выпуклую окрестность нулевого элемента; иначе говоря, топологическое векторное пространство… …

    Математическая энциклопедия

  • 143ЛОКАЛЬНО КОНЕЧНОЕ ПОКРЫТИЕ — покрытиетопологич. пространства его подмножествами такое, что у каждой точки есть окрестность, пересекающаяся лишь с конечным числом элементов этого покрытия. Не из всякого открытого покрытия прямой можно выделить Л. к. п.: достаточно рассмотреть …

    Математическая энциклопедия

  • 144МАКСИМУМА И МИНИМУМА ТОЧКИ — точки, в к рых действительная функция принимает наибольшее или наименьшее значения на области определения; такие точки наз. также точками абсолютного максимума или абсолютного минимума. Если функция f определена на топологич. пространстве X, то… …

    Математическая энциклопедия

  • 145МЕТРИЗУЕМОЕ ПРОСТРАНСТВО — пространство, топология к рого порождается иек рой метрикой по правилу: точка принадлежит замыканию множества в том и только в том случае, если она лежит на нулевом расстоянии от этого множества. Если такая метрика существует, то она не… …

    Математическая энциклопедия

  • 146МОРСА ЛЕММА — утверждение, описывающее строение ростка дважды непрерывно дифференцируемой функции. Пусть функция класса , имеющая точку своей невырожденной критиче ской точкой. Тогда в нек рой окрестности Uточки Осуществует такая система локальных координат… …

    Математическая энциклопедия

  • 147НЕПРЕРЫВНАЯ ФУНКЦИЯ — одно из основных понятий математического анализа. Пусть действительная функция f определена на нек ром подмножестве Едействительных чисел , т. е. . Функция f наз. непрерывной в точке (или, подробнее, непрерывной в точке по множеству Е), если для… …

    Математическая энциклопедия

  • 148НЕПРЕРЫВНОЕ РАЗБИЕНИЕ — топологического пространствах покрытие пространства Xпопарно непересекающимися непустыми множествами, удовлетворяющее условию: каковы бы ни были и окрестность Uмножества Fв X, найдется окрестность Vмножества Fв X, содержащаяся в Uи являющаяся… …

    Математическая энциклопедия

  • 149НЕПРЕРЫВНЫЙ ОПЕРАТОР — непрерывное отображение Амножества Мтопологического и, как правило, векторного пространства Xв такое же пространство , а именно: 1) отображение непрерывно в точке , если для любой окрестности точки найдется окрестность точки х 0 такая, что ; 2)… …

    Математическая энциклопедия

  • 150НЕЯВНАЯ ФУНКЦИЯ — функция заданная уравнением нек рые множества, т. е. такая функция f, что при любом имеет место . Если топологич. пространства и для нек рой точки выполняется условие то при определенных условиях в нек рой окрестности точки уравнение …

    Математическая энциклопедия

  • 151НУЛЬМЕРНОЕ ПРОСТРАНСТВО — в смысле ind пространство, обладающее базой из множеств одновременно открытых и замкнутых в нем. Каждое дискретное пространство нульмерно, однако Н. п. может не иметь изолированных точек (пример пространство рациональных чисел ). Все нульмерные… …

    Математическая энциклопедия

  • 152ОБОБЩЕННЫЕ ПОЧТИ ПЕРИОДИЧЕСКИЕ ФУНКЦИИ — классы функций, являющиеся различными обобщениями почти периодич. функций. Каждый из них обобщает какую то из сторон в определениях Бора почти периодических функций и Бохнера почти периодических функций. В этих определениях встречаются следующие… …

    Математическая энциклопедия

  • 153ОБРАТНАЯ ФУНКЦИЯ — функция, определенная на множестве значений заданной функции и ставящая в соответствие каждому его элементу множество всех тех элементов из области определения рассматриваемой функции, к рые в него отображаются, т. е. его полный прообраз. Если… …

    Математическая энциклопедия

  • 154ПОГРУЖЕНИЕ — иммерсия, отображение одного топологич. пространства в другое, при к ром каждая точка в Xимеет окрестность U, к рую f гомеоморфно отображает на fU. Это понятие применяется главным образом к отображению многообразий, где часто дополнительно… …

    Математическая энциклопедия

  • 155ПОЛЮС — изолированная особая точка а однозначного характера аналитич. ции f(z) комплексного переменного zтакая, что |f(z)| неограниченно возрастает при приближении к a, . В достаточно малой проколотой окрестности V= {z С:0<|z а|<r} точки или V = {… …

    Математическая энциклопедия

  • 156ПРЕДЕЛЬНАЯ ТОЧКА — множества точка, в любой окрестности к рой содержится по крайней мере одна точка данного множества, отличная от нее самой. Рассматриваемые множества и точка предполагаются принадлежащими нек рому топологич. пространству. Множество, содержащее все …

    Математическая энциклопедия

  • 157РИМАНОВА ГЕОМЕТРИЯ — теория риманова пространства. Р и м а н о в ы м п р о с т р а н с т в о м наз. n мерное связное дифференцируемое многообразие М п, на к ром задано дифференцируемое поле ковариантного, симметрического и положительно определенного тензора gранга 2 …

    Математическая энциклопедия

  • 158РИМАНОВА ПОВЕРХНОСТЬ — а н а л и т и ч е с к ой ф у н к ц и и w=f(z) к о м п л е к с н о г о п е р ем е н н о г о z поверхность R такая, что данная полная аналитическая функция w=f(z), вообще говоря многозначная, может рассматриваться как однозначная аналитич. ция… …

    Математическая энциклопедия

  • 159РИМАНОВЫХ ПОВЕРХНОСТЕЙ КЛАССИФИКАЦИЯ — изучение римановых поверхностей (р. п.), связанное с рассмотрением поведения функций различных классов на этих поверхностях. Комплексная функция на р. п. Rназ. а н а л и т и ч е с к о й на R, если для любой точки существуют окрестность Uи… …

    Математическая энциклопедия

  • 160СВЯЗНОСТЬ — свойство топологич. пространства, состоящее в том, что пространство нельзя представить в виде суммы двух отделенных друг от друга частей, или, более строго, непустых непересекающихся открыто замкнутых подмножеств. Пространство, не являющееся… …

    Математическая энциклопедия